Real Banach Spaces with Numerical Index 1
نویسنده
چکیده
We show that an infinite-dimensional real Banach space with numerical index 1 satisfying the Radon– Nikodỳm property contains l1. It follows that a reflexive or quasi-reflexive real Banach space cannot be re-normed to have numerical index 1, unless it is finite-dimensional.
منابع مشابه
. FA ] 1 A ug 2 00 7 BANACH SPACES WITH POLYNOMIAL NUMERICAL INDEX 1
We characterize Banach spaces with polynomial numerical index 1 when they have the Radon-Nikod´ym property. The holomorphic numerical index is introduced and the characterization of the Banach space with holomorphic numerical index 1 is obtained when it has the Radon-Nikod´ym property.
متن کاملBanach Spaces Having the Radon-nikodỳm Property and Numerical Index 1
Let X be a Banach space with the Radon-Nikodỳm property. Then, the following are equivalent. (i) X has numerical index 1. (ii) |x∗∗(x∗)| = 1 for all x∗ ∈ ex(BX∗ ) and x∗∗ ∈ ex(BX∗∗ ). (iii) X is an almost-CL-space. (iv) There are a compact Hausdorff space K and a linear isometry J : X → C(K) such that |x∗∗(J∗δs)| = 1 for all s ∈ K and x∗∗ ∈ ex(BX∗∗ ). If X is a real space, the above conditions ...
متن کاملCompact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملTwo-dimensional Banach Spaces with Polynomial Numerical Index Zero
We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.
متن کاملOn The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces
In this paper, we obtained the convergence of modified Noor iterative scheme for nearly Lipschitzian maps in real Banach spaces. Our results contribute to the literature in this area of re- search.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999